Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

⟨EC⟩

<18/10/2020>

CONTINUOUS INTERNAL EVALUATION- 1

Dept:EC

Sem: V

Sub:DSP

S.Code:18EC52

Date:19/10/2020

Time: 2:30-4:00 pm Max Marks: 50

Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q N	Questions	Marks	RBT	COs
5,84	PART A			
1 2	e properties of DFT Circular convolution and product of DFT's Parseval's Theorem Circular time shift	9	L2	CO1
b Find	the N point DFT of $x(n)=0.5n$, $0 \le n \le N-1$.	6	L3	COI
c Deriv	ve the Radix-2 DIT-FFT algorithm for N=8. Draw the complete I flow graph for the same.	10	L2	CO2
	OR			
2 a Find -2<=	the 4 point DFT of the non causal sequence $x(n)=\{-1,2,-3,4\}$, $n\leq 1$. Find its magnitude and phase response.	5	L3	COI
x2(n) (Hint	(n)= $\{1,2,3,4\}$ and X1(k)= $\{10,-2+2j,-2,-2-2j\}$. Find DFT of $=\{1,0,2,0,3,0,4,0\}$ using minimum number of operations. :Observe even and odd sequence of x2(n), relate it to x1(n))	6	L3	COI
1,1,	overlap save method to find convolution of $x(n)=(1,2,0,-3,4,2,-2,3,2,1,-3)$ and $h(n)=(1,-1,1)$. Use N=5 point circular convolution.	7	L3	CO2
d Find	the 8 point DFT of the sequence x(n)={1,2,3,4,5,4,3,2} using x-2 DIF-FFT algorithm.	7	L3	CO2
	PART B			
h(n)=	the circular convolution of two sequences $x(n)=\{1,2,1,2\}$ and $\{2,1,2,1\}$ using DFT and IDFT.	7	L3	COL
bFind	the N point DFT of $x(n) = \cosh(an)$	6	L3	COL
c For th G(k)	ne sequences $g(n)=\{1,2,3,4\}$ and $h(n)=\{1,1,1,1\}$. Find the DFT's and $H(k)$ using single point DFT.	7	L3	CO2
d Find and re	the number of complex multiplier, complex adder, real multiplier eal adder for N point DFT using direct computation.	5	L3	CO2
	OR			
a For th	ne given 4 point DFT $X(k)=\{10,-2+2j,-2,-2-2j\}$ find its energy.	4	L3	COI
b Deriv	e the expression for reconstructing a periodic sequence xp(n) in samples of the spectrum X(w)	6	L2	COI
c Find the h(n)=	the circular convolution of two sequences $x(n)=\{1,2,1,2\}$ and $\{2,1,2,1\}$ using radix-2 DIT-FFT algorithm	7	L3	CO2
d Deriv comp	e the Inverse Radix-2 DIT-FFT algorithm for N=8. Draw the lete signal flow graph for the same.	8	L2	CO2

Prepared by: Shivaprasad

B) Lust

Page: 1